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Predicting full load electrical power output of a base load power plant is important in order to maximize
the profit from the available megawatt hours. This paper examines and compares some machine learning
regression methods to develop a predictive model, which can predict hourly full load electrical power
output of a combined cycle power plant. The base load operation of a power plant is influenced by four
main parameters, which are used as input variables in the dataset, such as ambient temperature, atmo-
spheric pressure, relative humidity, and exhaust steam pressure. These parameters affect electrical power
output, which is considered as the target variable. The dataset, which consists of these input and target
variables, was collected over a six-year period. First, based on these variables the best subset of the data-
set is explored among all feature subsets in the experiments. Then, the most successful machine learning
regression method is sought for predicting full load electrical power output. Thus, the best performance
of the best subset, which contains a complete set of input variables, has been observed using the most
successful method, which is Bagging algorithm with REPTree, with a mean absolute error of 2.818 and
a Root Mean-Squared Error of 3.787.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In order for accurate system analysis with thermodynamical ap-
proaches, a high number of assumptions is necessary such that
these assumptions account for the unpredictability in the solution.
Without these assumptions, a thermodynamical analysis of a real
application compels thousands of nonlinear equations, whose solu-
tion is either almost impossible or takes too much computational
time and effort. To eliminate this barrier, the machine learning ap-
proaches are used mostly as alternative instead of thermodynam-
ical approaches, in particular, to analyze the systems for arbitrary
input and output patterns [1].

Predicting a real value, which is known as regression, is the
most common problem researched in machine learning. For this
reason, machine learning algorithms are used to control response
of a system for predicting a numeric or real-valued target feature.
Many real-life problems can be solved as regression problems, and
evaluated using machine learning approaches to develop predic-
tive models [2].

This paper deals with several machine learning regression
methods for a prediction analysis of a thermodynamic system,
which is a combined cycle power plant (CCPP) with two gas tur-
bines, one steam turbine, and two heat recovery systems. Predict-
ing electrical power output of a power plant has been considered a
critical real-life problem to construct a model using machine learn-
ing techniques. To predict full load electrical power output of a
base load power plant correctly is important for the efficiency
and economic operation of a power plant. It is useful in order to
maximize the income from the available megawatt hours
(MW h). The reliability, and sustainability of a gas turbine depend
highly on prediction of its power generation, particularly when it is
subject to constraints of high profitability and contractual
liabilities.

Gas turbine power output primarily depends on the ambient
parameters which are ambient temperature, atmospheric pressure,
and relative humidity. Steam turbine power output has a direct
relationship with vacuum at exhaust. In the literature, the effects
of ambient conditions are studied with intelligent system tools
such as Artificial Neural Networks (ANNs) for prediction of electri-
cal power (PE) [1,3,4]. In [1], the effects of ambient-pressure and
temperature, relative humidity, wind-velocity and direction on
the plant power are investigated using the ANN model, which is
based on the measured data from the plant. In [4], the ANN model
is used to predict the operational and performance parameters of a
gas turbine for varying local ambient conditions.
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The intelligent systems are also used for modeling a stationary
gas turbine. For instance, ANNs identification techniques are devel-
oped in [5] and the results show that ANN system identification are
perfectly applicable to estimate gas turbine behaviors in wide range
of operating points from full speed no load to full load conditions. In
[6], Multi Layer Perceptron (MLP) and Radial Basis Function (RBF)
Networks are used for identification of stationary gas turbine in
startup stage. In [7], dynamic linear models and Feed Forward
Neural Networks are compared for gas turbine identification and
the neural network is found as a predictor model to identify with
better performances than the dynamic linear models. In [8,9], the
ANNs models are also used for performance analysis, anomaly
detection, fault detection and isolation of gas turbine engines.

Furthermore, in the literature, several studies, e.g., [10–16] have
been undertaken to predict electricity energy consumption using
machine learning tools, only a few studies such as [1], which is re-
lated to prediction of the total electric power of a cogeneration
power plant with three gas turbines, one steam turbine and a district
a heating system, are found to be as a similar study of this paper.

Pertaining to power plants, it is needed to develop a reliable
predictive model for the following day’s net energy yield (full load
electrical power output) per hour by using real-valued target fea-
ture. For this task, there are two main purposes of this study. First
one is to determine the best subset of the dataset, which gives the
highest predictive accuracy with a combination of the input
parameters defined for gas and steam turbines such as ambient
temperature, vacuum, atmospheric pressure, and relative humid-
ity. For this purpose, the effects of different combinations of the
parameters were investigated and analyzed on predicting full load
electrical power output by using 15 machine learning regression
methods in WEKA [17] toolbox. Afterwards, the results of the pre-
dictive accuracies for the different combinations of the parameters
were compared and evaluated to find out the best subset of the
dataset. This paper compared the predictive accuracies of the
regression methods as the second purpose, which was found out
the most successful regression method in the prediction of full load
electrical power output of a base load operated CCPP with the
highest prediction accuracy.

The remainder of this paper is organized as follows. In Section 2
materials and methods are elaborated, whereas the experimental
work is given in Section 3. In Section 4 we provide a discussion
of the study and then we conclude in Section 5.
2. Materials and methods

2.1. System description

A combined cycle power plant is composed of gas turbines (GT),
steam turbines (ST) and heat recovery steam generators (HRSG). In
a CCPP, the electricity is generated by gas and steam turbines,
which are combined in one cycle, and is transferred from one tur-
bine to another [18]. A gas turbine in a combined cycle system does
not only generate the electrical power but also generates fairly hot
exhaust. Routing these gases through a water-cooled heat exchan-
ger produces steam, which can be turned into electric power with a
coupled steam turbine and generator. Hence, a gas turbine gener-
ator generates electricity and waste heat of the exhaust gases is
used to produce steam to generate additional electricity via a
steam turbine. This type of power plant is being installed in
increasing numbers around the world where there is access to sub-
stantial quantities of natural gas [19].

The CCPP,1 which supplied the dataset for this study, is designed
with a nominal generating capacity of 480 MW, made up of
1 The name of donor power plant is kept confidential.
2 � 160 MW ABB 13E2 Gas Turbines, 2 � dual pressure Heat Recov-
ery Steam Generators (HRSG) and 1 � 160 MW ABB Steam Turbine
as illustrated in Fig. 1.

Gas turbine load is sensitive to the ambient conditions; mainly
ambient temperature (AT), atmospheric pressure (AP), and relative
humidity (RH). However, steam turbine load is sensitive to the ex-
haust steam pressure (or vacuum, V). These parameters of both gas
and steam turbines, which are related with ambient conditions and
exhaust steam pressure, are used as input variables in the dataset
of this study. The electrical power generating by both gas and
steam turbines is used as a target variable in the dataset. All the in-
put variables and target variable, which are defined as below, cor-
respond to average hourly data received from the measurement
points by the sensors denoted in Fig. 1.

(1) Ambient Temperature (AT): This input variable is measured in
whole degrees in Celsius as it varies between 1.81 �C and
37.11 �C.

(2) Atmospheric Pressure (AP): This input variable is measured in
units of minibars with the range of 992.89–1033.30 mbar.

(3) Relative Humidity (RH): This variable is measured as a per-
centage from 25.56% to 100.16%.

(4) Vacuum (Exhaust Steam Pressure, V): This variable is mea-
sured in cm Hg with the range of 25.36–81.56 cm Hg.

(5) Full Load Electrical Power Output (PE): PE is used as a target
variable in the dataset. It is measured in mega watt with
the range of 420.26–495.76 MW.

2.2. Feature subset selection

Data pre-processing is a significant process that contains the
processes of cleaning, integration, transformation, and reduction
of data for using quality data in machine learning (ML) algorithms.
Data sets may vary in dimension from two to thousands of fea-
tures, and many of these features may be irrelevant or redundant.
Feature subset selection decreases the data set dimension by
removing irrelevant and redundant features from an original fea-
ture set. The objective of feature subset selection is to procure a
minimum set of original features. Using the decreased set of origi-
nal features enables ML algorithms to operate faster and more
effectively. Therefore, it helps to predict more correctly by increas-
ing learning accuracy of ML algorithms and improving result com-
prehensibility [20].

The feature selection process begins by inputting an original
feature set, which includes n number of features or input variables.
At the first stage of feature selection, which is called subset gener-
ation, a search strategy is used for producing possible feature sub-
sets of the original feature set for evaluation. Abstractly, the
current best subset of the original feature set can be performed
by evaluating all the possible feature subsets, which are all the
contending 2n possible subsets. This search is known as exhaustive
search, which is too costly and impracticable if the original feature
set consists of enormous features [21]. There are also some several
search procedures to find the optimal subset of the original feature
set, which are more realistic, easier and more practical. However,
in this study, the exhaustive search is used as search procedure.
Therefore, every feature combination is tried and marked with a
score by using ML regression methods, which equals a value of
the prediction accuracy. Then the results of each ML regression
method are compared to find the feature subset with the best
prediction accuracy, which is called as the best subset.

2.3. Machine learning regression methods

A machine learning (ML) algorithm estimates an unknown
dependency between the inputs, which are independent variables,
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Fig. 1. The combined cycle power plant layout.
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and output, which is a dependent variable, from a dataset. In this
study, regression methods are generated as learning algorithms
to predict full load electrical power output of a combined gas
and steam turbines and the dataset is considered as a pair (Xi, Yi),
that is known as an instance. A machine learning regression meth-
od, which builds a mapping function bY ¼ ðXi;YiÞ by using these
pairs, behaves as shown in Fig. 2. The purpose of a machine learn-
ing regression method is to select the best function, which mini-
mizes the error between the actual output (Y) of a system and
predicted output ðbY Þ based on instances of the dataset, which are
called training dataset [22].

Table 1 shows a list of the ML regression methods, which are
used in this study. Most of these regression methods have been
widely used for modeling many real-life regression problems.
These methods are divided into five categories such as Functions,
Lazy-learning Algorithms, Meta-learning Algorithms, Rule-based
Algorithm, and Tree-based Learning Algorithms, stated by the
WEKA statistical analysis package. Functions contain algorithms,
Machine Learning 

Regression Method

Input Data

Power Plant System

Mimimize Error

Fig. 2. A machine learning regression method using real system data to predict
output.
which are based on the mathematical models. Lazy-learning algo-
rithms delay dealing with training data until a query is answered.
They store the training data in memory and find relevant data in
the database to answer a particular query. Meta-learning algo-
rithms integrate different kinds of learning algorithms to enhance
the achievement of the used current learning algorithms. Rule-
based algorithm uses decision rule for regression model. Tree-
based learning algorithms are used for making predictions via a
tree structure. Leaves of the tree structures illustrate classifications
and branches of the tree structures denote conjunctions of
features.

Here we present a brief summary of the methods in Table 1.

(1) Simple Linear Regression (SLR): The SLR generates a regres-
sion model, which has lowest squared error. This model fits
straight models between each input attribute (a0 and a1) and
output (x) as in Eq. (1), in which the values of w and w0,
which are the weight of a0 and a1, are estimated by the
method of least squares. In Eq. (1), a0 is assumed as the con-
stant 1.
x ¼ w0 þwa1 ð1Þ
The predictive model is chosen by minimizing the squared er-
ror, which is the difference between the observed values and the
predicted values as illustrated in Fig. 2 [23].

(2) Linear Regression (LR): The LR presents a mathematical
model of the relationship between a dependent variable



Table 1
Regression methods used in this study.

Categories Method name Abbreviation

Functions Simple Linear Regression SLR
Linear Regression LR
Least Median Square LMS
Multilayer Perceptron MLP
Radial Basis Function Neural
Network

RBF

Pace Regression PR
Support Vector Poly Kernel
Regression

SMOReg

Lazy-learning algorithms IBk Linear NN Search IBk
KStar K⁄

Locally Weighted Learning LWL

Meta-learning algorithms Additive Regression AR
Bagging REP Tree BREP

Rule-based algorithm Model Trees Rules M5R

Tree-based learning
algorithms

Model Trees Regression M5P
REP Trees REP
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and one or more independent variables. The data is observed
using a linear model by this algorithm. LR method deals with
weighted instances to create a prediction model. The least
squares regression is performed to specify linear relations
in the training data. If there is some linear dependency
among the data, LR may create a best predictive model,
which is a linear regression equation to predict the output
value (x) for a set of input attributes a1, a2, . . . , ak. In Eq.
(2), w0, w1, . . . , wk, are the weights respectively of each input
attribute, where w1 is the weight of a1 and a0 is always con-
sidered as the constant 1.
x ¼ w0 þw1a1 þ � � � þwkak ð2Þ
Fig. 3. Multi layer perceptron neural networks.
The weights must be selected to minimize the difference be-
tween the actual output value and predicted output value. In Eq.
(3), the predicted output value for the first instance of a training
dataset is calculated as

w0 þw1að1Þ1 þ � � � þwkað1Þk ¼
Xk

j¼0

wja
ð1Þ
j ð3Þ

After the predicted outputs for all instances are calculated, the
weights are updated to minimize sum of squared differences be-
tween the actual and predicted outcome as in Eq. (4) [24,25].Xn

i¼1

xðiÞ �
Xk

j¼0

wja
ðiÞ
j

 !
ð4Þ

(3) Least Median Square (LMS): The LMS method is a linear
regression method reduces the median squared error. In
LMS algorithm, the weights are reassigned to minimize the
median of the squares of the difference between the actual
output and the predicted outcome using the regression
equation as in Eq. (5) [26].

median
i

xðiÞ �
Xk

j¼0

wja
ðiÞ
j

 !
ð5Þ

(4) Multi Layer Perceptron (MLP): The MLP is a feed forward arti-
ficial neural network model that consists of neurons with
massively weighted interconnections, where signals always
travel in the direction of the output layer. These neurons
are mapped as sets of input data onto a set of appropriate
outputs with hidden layers as illustrated in Fig. 3. The input
signals are sent by the input layer to the hidden layer with-
out performing any operations. Then the hidden and output
layers multiply the input signals by a set of weights, and
either linearly or nonlinearly transforms results into output
values. These weights are optimized to obtain reasonable
prediction’s accuracy. A typical MLP with one hidden layer
can be mathematically defined in Eqs. (6)–(10) as below
[27]:
uj ¼
XNinp

i¼1

Xiaij þ aoj ð6Þ
Eq. (6) expresses summing products of the inputs (Xi) and weight
vectors (aij) and a hidden layer’s bias term (a0j). In Eq. (7), the out-
puts of hidden layer (Zj) are obtained as transforming this sum,
which is defined in Eq. (6), using transfer function (activation func-
tion) g.

Zj ¼ gðujÞ ð7Þ

The most widely used transfer function is sigmoid function,
which is defined in Eq. (8) for input x. The hidden and output layers
are based on this sigmoid function.

gðxÞ ¼ sigmoidðxÞ ¼ 1
ð1þ e�xÞ ð8Þ

Eq. (9) defines summing products of hidden layer’s outputs (Zj) and
weight vectors (bjk) and output layer’s bias term (b0k).

vk ¼
XNhid

j¼1

Zjbjk þ b0k ð9Þ

In Eq. (10), the outputs of the output layer (Yk) are obtained by
transforming this sum, which is obtained in Eq. (9), using sigmoid
function g, which is defined in Eq. (8) [22].

Yk ¼ gðvkÞ ð10Þ

(5) Radial Basis Function Neural Network (RBF): The RBF Neural
Network is emerged as a variant of neural network. It uses
a normalized distance between the input points and the hid-
den nodes to define the activation of each node [27]. RBF
Network maps inputs from the input layer to each of the hid-
den units, which use radial functions for activation. A Gauss-
ian function is useful in finding the activation at a hidden
unit. The Gaussian function is defined as [28]: !

hðxÞ ¼ exp

�ðx� cÞ2

r2 ð11Þ
where c is the center of bell-shaped Gaussian and r is the width.
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(6) Pace Regression (PR): The PR method creates a predictive
model by evaluating the effects of each variable. It uses a
cluster analysis to enhance the statistical basis for estimat-
ing their contribution to the overall regression [23].

(7) Support Vector Poly Kernel Regression (SMOReg): Support vec-
tor machines (SVM) are kernel based learning algorithm for
solving classification and regression problems. Support vec-
tor regression (SVR) maps the input data x into a higher
dimensional feature space by nonlinear mapping to solve a
linear regression problem in this feature space. This trans-
formation can be done using a kernel function. The most
common existing kernel functions are linear kernel, polyno-
mial kernel, Gaussian (RBF) kernel, and sigmoid (MLP) kernel
[28]. In this study, Support Vector Poly Kernel Regression is
used as an implementation of the sequential minimal opti-
mization algorithm for training a support vector regression
model.

(8) IBk Linear NN Search (IBk): The IBk instance-based learning
that works as a k-nearest-neighbor classifier, which is the
most commonly used instance-based or lazy method for
both classification and regression problems. In this paper,
it is used for a regression problem. The algorithm normalizes
attributes by default and can do distance weighting. A vari-
ety of different search algorithms are used to speed up the
task of finding the nearest neighbors [20].

The KNN algorithm first measures distances between each in-
stance in the training dataset and the test instance according to a
distance metric, which is often used Euclidian distance, then the
nearest instances to the test instance are determined as the target
value. For this purpose, the KNN algorithm gives higher values to
the weights of the nearer neighbors. Thus, Eq. (12) is used to pre-
dict the target value of the test instance (qi) [2].

Simðqi; sjÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
f�1dðq; s; f Þ

2
q

ffiffiffiffi
N
p ð12Þ

(9) KStar (K⁄): KStar method is also an instance-based classifier
used for regression. It generates a predictive model by using
some similarity function based on an entropy-based dis-
tance function [29].

(10) Locally Weighted Learning (LWL): The LWL uses an instance-
based algorithm, which assigns instance weights. This algo-
rithm can perform classification or regression [20].

(11) Additive Regression (AR): The AR is a meta-learning algo-
rithm, which produces predictions by combining contribu-
tions from an ensemble (collection) of different models.
Each iteration fits a model to the residuals left by the classi-
fier on the previous iteration. Prediction is accomplished by
adding the predictions of each classifier. Reducing the
shrinkage parameter helps prevent over fitting and has a
smoothing effect, although it increases the learning time
[30].

(12) Bagging REP Tree (BREP): Bagging or bootstrap aggregating is
general technique for improving prediction rules by creating
various sets of the training sets. Bagging algorithm is applied
to tree-based methods such as REP Trees to reduce the
variance associated with prediction, and therefore, increase
the accuracy of the resulting predictions. Bagging can be
formalized as follows

ŷBAG ¼
1
B

XB

b¼1

;ðx; TbÞ ð13Þ

where B is the number of bootstrap samples of training set T and x is
the input. ŷBAG is the average of the different estimated trees. A
bootstrap sample is randomly drawn from the training set, but with
replacement. The purpose is to create numerous similar training
sets using, sampling and train a new function for each of these sets.
The functions learned from these sets are then used collectively to
predict the test set [31,32]. In this study, we use Bag Size Percentage
of 100, with 10 iterations and REP Tree as a predictor. These are the
default settings provided by the WEKA tool.

(13) Model Trees Rules (M5R): The M5R is a rule-based algorithm,
based on M5 algorithm, which builds a tree to predict
numeric values for a given instances. For a given instance,
the tree is traversed from top to bottom until a leaf node is
reached and the best leaf into a rule is made using a decision
list [23].

(14) Model Trees Regression (M5P): The M5P is a regression-based
decision tree algorithm, which builds a model tree using the
M5 algorithm. For a given instance, the tree is traversed from
top to bottom until a leaf node is reached. At each node in
the tree, a decision is made to follow a particular branch
based on a test condition on the attribute associated with
that node. As the leaf nodes contain a linear regression
model to obtain the predicted output, the tree is called a
model tree. The M5P algorithm builds a model tree using
to divide and conquer method [33].

(15) Reduced Error Pruning (REP) Trees: The REP Trees algorithm
creates a regression tree using the node statistics such as
information gain or variance reduction measured in the
top-down phase, and prunes it using reduced-error pruning
[34].

3. Comparative analysis

This section discusses the comparative analysis that was con-
ducted to evaluate and compare the some machine learning
regression methods available for predicting hourly full load electri-
cal power output of a CCPP, which is combined with gas and steam
turbines. First, the best subset of the dataset is explored among all
feature subsets in the experiments. Then, the most successful ma-
chine learning regression method is sought for predicting full load
electrical power output. The flow diagram of the prediction process
is illustrated in Fig. 4.

3.1. Dataset description

The dataset used in this study, which consists of four input vari-
ables and a target variable, was collected over a six-year period
(2006–2011). It is composed of 9568 data points collected when
the CCPP is set to work with a full load over 674 different days.
The input variables correspond to average hourly data received
from the measurement points by the sensors denoted in Fig. 1.

The input variables affect full load electrical power output (PE),
which is considered as the target variable in the dataset and corre-
sponds to average hourly full load electrical power output data re-
ceived from the control system when the power plant was at base
load.

At the beginning of the pre-processing stage shown in Fig. 4, the
dataset was consisting of 674 datasheets (formatted in .xls) of 674
different days with some noisy and incompatible data. The data is
cleaned by filtering the incompatible data, which is out of range
meaning that if the power plant is operating below 420.26 MW,
and the noisy data, which occurs when the signal is interfered from
electrical disturbance.

Then the datasets are merged to eliminate any duplication
data and to be integrated dataset. After that, the dataset, which
includes 674 files formatted as .xls, is integrated as a file format-
ted in .xls. Then it has been randomly shuffled five times and
transformed to a file formatted as .arff that is necessary for



The Dataset
(674 files formatted in .xls for 674 days)

Pre-Processing
Data Cleaning
Data Integration (674 .xls files  1 .xls file)
Data Transformation 
-The dataset is randomly shuffled 5 times (1 .xls file  5 .xls files) 
-Transformation (.xls files .arff files)

Original Feature Set  
(5 Files formatted in .arff)                      

(Each one includes 5 Features, 9568 Instances)

Selection of The Best Subset
(Exhaustive Search)

The subsets with 1 variable  (4 subsets)  
The subsets with 2 variables (6 subsets)
The subsets with 3 variables (4 subsets) 
The subsets with 4 variables (1 subset)

Selected Subset

Machine Learning Regression Methods                      
(15 Algorithms in WEKA, 2 CV)

MLP
RBF
PR

 SMOReg

Functions Lazy Meta Rules Trees
SL IBk AR M5P M5P
LR K* BREP REP

LMS LWL

Results (15x5x2=150 measurements)

Statictical Test 
(150x2=300 tests in ANOVA)

Best Subset & Best Regression Method

Fig. 4. The flow diagram of the prediction process.
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processing in WEKA tool. At the end of pre-processing, the
original feature set is composed of five files formatted as .arff
and each file consists of 9568 data points with five totally param-
eters as the integrated data set.

Table 2 denotes simple statistics of the dataset.
Table 3 is the covariance matrix which indicates that the

parameters are not independent.
Table 4 illustrates the parameters’ cross-correlation. The scatter

plot of the data used is given in Fig. 5. When Table 4 and Fig. 5 are
examined together, the highest correlation among input features is
observed between AT and V (0.84). Moreover, the highest correla-
tions with target variable (PE) are also observed with AT (�0.95)
and V (�0.87).

According to Fig. 5, atmospheric pressure (AP) and relative
humidity (RH) do not have a strong correlation with the target
variable (PE) sufficient for an individual prediction. When other
factors remain constant, it has been shown that PE increases
with increasing AP and RH individually. Here the effects of each
input variable individually on target variable are presented as
below:



Table 3
Covariance matrix.

AT V AP RH PE

AT 55.54 79.94 �22.46 �59.03 �120.59
V 161.49 �31.21 �57.92 �188.64
AP 35.27 8.63 52.55
RH 213.17 97.13
PE 291.28

Table 4
Correlation matrix.

V AP RH PE

AT 0.84 �0.51 �0.54 �0.95
V �0.41 �0.31 �0.87
AP 0.10 0.52
RH 0.39
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(1) Effect of Ambient Temperature (AT): The effect of AT on the
performance is the most widely studied subject about gas
turbines [35–37]. This can be appreciated since AT is the
most influential factor showing a correlation around �0.95
with PE as illustrated in Fig. 5.

Fig. 6 shows the scatter diagram of AT vs. PE and the linear
regression model fit to data. This illustration is done using the
whole dataset for the purpose of preliminary investigation. The
resulting predictive model

y ¼ �2:1713xþ 497:03 ð14Þ

can be interpreted as unit (�C) increase in AT accounts for a reduc-
tion of 2.1713 MW in PE. The performance reduction due to increase
in temperature is known to stem from the decrease in the density of
inlet air.

(2) Effect of Ambient Pressure (AP): Among the ambient variables,
the second most influential one is AP [35]. However, it does
not have a strong correlation with the target variable suffi-
cient for an individual prediction, as it can be observed from
the scatter diagram shown in Fig. 7, which indicates the pre-
dictive model for whole dataset as below:
Table 2
Basic st

Min
Max
Mea
Varia
y ¼ 1:4335x� 998:78 ð15Þ
Similar to affect the mechanism of AT, AP is responsible for the
density of inlet air. The slope of the linear regression function tells
us that unit increase in AP corresponds to 1.4335 MW increase in
PE. However, this is a naïve estimation taking into account the
other factors. When other factors remain constant, it has been
shown that PE increases with increasing AP [35].

(3) Effect of Relative Humidity (RH): When other variables are
kept constant, the performance is increased with RH
[35,38]. However, as it can be seen from Fig. 8, which gives
the predictive model as in Eq. (16), it is not self-sufficient
for prediction.
y ¼ 0:4556xþ 420:96 ð16Þ
Higher relative humidity increases exhaust-gas temperature of
gas turbine which leads to an increase in the power generated by
the steam turbine [35].

(4) Effect of Vacuum (V): As seen in Fig. 1, the plant also employs
a steam turbine which leads to considerable increase in total
electrical efficiency. V variable (exhaust vacuum in cm Hg) is
collected from steam turbine and is found influential in its
performance as in Fig. 5. When all other variables are kept
constant exhaust-vacuum is known to have a negative influ-
ence on condensing-type turbine efficiency [39]. As depicted
in Fig. 9, PE is inversely proportional to V as in Eq. (17).
y ¼ �1:1681xþ 517:8 ð17Þ
It can also be observed that the slope of linear regression func-
tion is greater than those of RH and AP but less than AT.
atistics of dataset.

AT V AP RH PE

1.81 25.36 992.89 25.56 420.26
37.11 81.56 1033.30 100.16 495.76

n 19.65 54.31 1013.26 73.31 454.37
nce 55.54 161.49 35.2 213.17 291.28
3.2. Prediction accuracy

The prediction accuracy of each machine learning regression
method is used to evaluate the overall match between actual and
predicted values. In this paper, the prediction accuracy is evaluated
by using the following performance criteria such as Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE) for continuous
variables.

(1) Mean Absolute Error (MAE): Mean absolute error is the aver-
age of the difference between predicted and actual value in
all test cases, without considering their direction [40].
MAE ¼ ja1 � c1j þ ja2 � c2j þ � � � þ jan � cnj
n

ð18Þ
(2) Root Mean-Squared Error (RMSE): Root Mean Square Error,
RMSE is a frequently used measure of differences between
values predicted by a model or estimator and the values
actually observed from the process being modeled or esti-
mated [40].ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffis

RMSE ¼ ða1 � c1Þ2 þ ða2 � c2Þ2 þ � � � þ ðan � cnÞ2

n
ð19Þ
In the above Eqs. (18) and (19), a is the actual value of the output, c
is the predicted value of the output. In all above error measure-
ments, a lower value means a more precise model, with a value of
0 depicting a statistically perfect model [41].

3.3. Producing feature subsets

Selection of the best subset is related to choosing a subset,
among the all feature subsets produced. The best subset is a feature
set, which indicates the best performance in prediction accuracy.
Theoretically, the best subset can be found by evaluating all the
possible subsets, which is known as exhaustive search. An exhaus-
tive search of the feature space needs to search all of 2n possible
subsets of n features. In this study, the exhaustive search is applied
to the original dataset, which consists of four parameters as input
variables and a target parameter as a response. The aim is to
choose a minimal model with the best subset, which correctly
predicts the response [42]. For this aim, after collecting prelimin-
ary statistical data, we applied an exhaustive search to the original
dataset to find the best subset by evaluating all the competing
candidate subsets (24 � 1 = 15) in the experiments. Moreover, we
have divided the experiments to four categories, in which the sub-
sets with one, two, three, and four parameters are applied to the
regression methods. In these experiments, we have determined
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Fig. 5. Pairwise scatter plot of parameters.

Fig. 6. Scatter diagram of AT (�C, x axis) vs. PE (MW, y axis).

Fig. 7. Scatter diagram of AP (mb, x axis) vs. PE (MW, y axis).
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the best subset of each experiment by evaluating and comparing
the results of all regression methods for the candidate subsets,
which are shown in Table 5.
3.4. Cross-validation

For subsequent experiments of this study, in order to compare
performance of different learning algorithms, 5 � 2 cross-validation
(CV) [43] was applied. In this scheme, the dataset is randomly
shuffled five times and each of them used in 2-fold cross-validation.

CV is a validation scheme where the dataset is partitioned into
equal sized subsets. In the general case of K-fold CV, at each ma-
chine learning experiment one subset is used for validation (i.e.
to test the predictive model) and the rest is for training. 2-fold



Fig. 8. Scatter diagram of RH (x axis) vs. PE (MW, y axis).

Fig. 9. Scatter diagram of V (cm Hg, x axis) vs. PE (MW, y axis).

Table 5
All possible subsets of the dataset.

Subsets AT V AP RH

With 1 parameter
AT 1 0 0 0
V 0 1 0 0
AP 0 0 1 0
RH 0 0 0 1

With 2 parameters
AT–V 1 1 0 0
AT–AP 1 0 1 0
AT–RH 1 0 0 1
V–AP 0 1 1 0
V–RH 0 1 0 1
AP–RH 0 0 1 1

With 3 and 4 parameters
AT–V–AP 1 1 1 0
AT–V–RH 1 1 0 1
AT–AP–RH 1 0 1 1
V–AP–RH 0 1 1 1
AT–V–AP–RH 1 1 1 1
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CV is a special case where at first experiment one half is trained to
validate on the second half and then the roles of the initial subsets
are swapped [44]. For the generalization of results, each cell in the
following tables (Tables 6–10) corresponds to an average of 10
(5 � 2 CV) [30] runs in WEKA toolbox.

3.5. Analysis of variance test

The resulting validation set performances of size 10 for each
learning algorithm are used for a statistical significance test. Thus,
Table 6
Regression errors with RMSE performances on the subsets with one parameter.

Categories Regression methods

Functions SLR
LR
LMS
MLP
RBF
PR
SMOReg

Lazy-learning algorithms IBk
K⁄

LWL

Meta-learning algorithms AR
BREP

Rule-based algorithm M5R

Tree-based learning algorithms M5P
REP

Mean
one-way Analysis of Variance (ANOVA) has been used for the sta-
tistical tests, which are applied to average results obtained from
each 2-fold CV. ANOVA is a parametric test in which the mean
across different groups is compared, and one-way ANOVA is cho-
sen here to analyze the significance of difference with respect to
a single-factor [45]. It is also used to compare results of machine
learning experiments [44]. The idea is to decompose the total var-
iability into within group and between group variability, which
provides estimators to dataset variance. Then the ratio of mean be-
tween and mean within group variance provide the test statistic.
One-way ANOVA tests the null hypothesis that the means of all
treatments are equal, and the alternative hypothesis is that at least
one pair is significantly different. When the null hypothesis is re-
jected post hoc tests are issued to evaluate pairwise differences
[44,45]. In our machine learning experiments, we test one-way
ANOVA for comparing algorithms and for comparing feature sub-
sets independently. Therefore, 300 measurements were obtained
over 15 � 5 � 2 � 2, which correspond to the number of methods,
2-fold average and features, respectively.
3.6. Selection of the best subset

The controlled experimental results, which belong to following
four experiments, have shown by using which subset the response
AT V AP RH

5.426 8.423 14.597 15.720
5.426 8.423 14.597 15.720
5.433 8.424 14.847 15.733
6.483 9.454 15.601 18.031
7.501 10.138 14.586 15.869
5.426 8.423 14.597 15.720
5.433 8.423 14.950 15.826

6.377 5.266 17.448 20.585
5.381 7.828 14.377 15.729
8.005 8.954 14.898 15.947

5.933 7.746 14.342 15.760
5.208 5.372 14.559 16.020

5.085 6.370 14.300 15.720

5.086 6.476 14.295 15.720
5.229 5.520 14.467 15.829

5.829 7.683 14.831 16.262



Table 7
Regression errors with RMSE performances on the subsets with two parameters.

Categories Regression methods AT–V AT–AP AT–RH V–AP V–RH AP–RH

Functions SLR 5.425 5.426 5.426 8.423 8.423 14.597
LR 4.956 5.376 4.800 7.884 8.151 13.395
LMS 4.968 5.384 4.808 7.923 8.152 13.612
MLP 6.091 6.399 5.687 8.579 9.498 14.310
RBF 8.757 7.719 10.665 9.962 9.903 15.558
PR 4.956 5.376 4.800 7.884 8.151 13.395
SMOReg 4.968 5.392 4.811 7.900 8.162 13.652

Lazy-learning algorithms IBk 5.560 6.619 6.239 8.039 9.407 17.562
K⁄ 4.634 5.157 4.903 6.926 7.481 12.996
LWL 7.915 8.211 8.254 8.918 9.080 14.399

Meta-learning algorithms AR 5.545 5.885 5.899 7.514 7.649 13.387
BREP 4.026 4.900 4.607 5.300 5.796 12.948

Rule-based algorithm M5R 4.419 4.904 4.554 6.747 7.109 13.074

Tree-based learning algorithms M5P 4.359 4.897 4.558 6.475 6.905 13.041
REP 4.339 5.059 4.772 5.888 6.476 13.248

Mean 5.395 5.780 5.652 7.624 8.023 13.945

Table 8
Regression errors with RMSE performances on the subsets with three parameters.

Categories Regression methods AT–V–AP AT–V–RH AT–AP–RH V–AP–RH

Functions SLR 5.426 5.426 5.426 8.423
LR 4.891 4.570 4.800 7.562
LMS 4.905 4.580 4.809 7.588
MLP 5.794 5.341 5.544 8.492
RBF 8.457 8.695 9.166 9.571
PR 4.891 4.570 4.799 7.562
SMOReg 4.905 4.585 4.812 7.569

Lazy-learning algorithms IBk 4.921 5.282 5.737 7.775
K⁄ 4.201 4.331 4.717 6.245
LWL 8.062 8.211 8.322 8.980

Meta-learning algorithms AR 5.552 5.549 5.907 7.415
BREP 3.855 3.922 4.438 5.324

Rule-based algorithm M5R 4.268 4.217 4.505 6.552

Tree-based learning algorithms M5P 4.205 4.178 4.504 6.354
REP 4.232 4.291 4.748 6.072

Mean 5.238 5.183 5.482 7.432
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can be predicted with the highest prediction accuracy by the
regression methods. The RMSE measure is used in the tables to
represent the performance of the regression methods to determine
the best subset.

In the first experiment, each input variable of the dataset has
applied individually to the regression methods. Thus, the perfor-
mance of the methods for predicting PE for the subsets, which con-
sist of only one parameter, is presented in Table 6. According to the
mean performance of each subset with one parameter for whole
regression methods in this table, the best subset of this experiment
is found as the subset with AT parameter with the highest predic-
tion accuracy, which is the lowest error in terms of a RMSE of
5.829.

In addition to that, a one-way ANOVA was used to test the sta-
tistical significance of the difference in predictive performances
among machine learning algorithms using only one feature. The
test result indicated no significant difference, F(14,285) = .48,
p = .940. A second one-way ANOVA was used to test for perfor-
mance differences among machine features over all algorithms.
The test result indicated significant difference between features,
F(3,296) = 1461.38, p < .05. A multiple comparison test based on
Tukey-HSD indicated that all groups differ significantly from each
other and the performance ordering is AT < V < AP < RH, which im-
plied AT yields the minimal error which validates the ANOVA
result (see Fig. 10) as also the mean performance results shown
in Table 6.

In the second experiment, the performance of the methods for
predicting PE for the subsets, which consist of only two parameters,
is compared in Table 7. This table indicates that the highest predic-
tion accuracy is found as a mean RMSE value of 5.395 for the subset
with AT, and V parameters, which is the best subset among the
subsets with two parameters.

On the other hand, statistical tests indicated that there is a sig-
nificant difference between performances of algorithms when
tested under one-way ANOVA, F(14,435) = 4.17, p < 0.05. However,
the post hoc tests had shown that the performance of the best algo-
rithm with two-parameter models was found to be significantly
better than only LWL and RBF. A one-way ANOVA was used to test
performances of subsets with two parameters. Results indicated a
significant difference among groups, F(5,444) = 485.76, p < 0.05.
Multiple comparison tests indicated no significant difference
among subsets containing AT (i.e. AT–V, AT–AP, and AT–RH). More-
over, all subsets, including AT were found to be significantly better
than the subsets without AT. The subset with AP, and RH parame-
ters was found to be significantly the worst as can be observed in
Table 7.

In the third experiment, the subsets with three parameters are
applied to all regression methods. Table 8 illustrates that the BREP



Table 9
Regression errors with RMSE performances on the subsets with four parameters and the best RMSE performances of the each previous experiments applied to subsets with one.
two. and three parameters.

Categories Regression methods AT AT–V AT–V–RH AT–V–AP–RH Mean

Functions SLR 5.426 5.425 5.426 5.426 5.426
LR 5.426 4.956 4.570 4.561 4.878
LMS 5.433 4.968 4.580 4.572 4.888
MLP 6.483 6.091 5.341 5.399 5.829
RBF 7.501 8.757 8.695 8.487 8.360
PR 5.426 4.956 4.570 4.561 4.878
SMOReg 5.433 4.968 4.585 4.563 4.887

Lazy-learning algorithms IBk 6.377 5.560 5.282 4.656 5.469
K⁄ 5.381 4.634 4.331 3.861 4.552
LWL 8.005 7.915 8.211 8.221 8.088

Meta-learning algorithms AR 5.933 5.545 5.549 5.556 5.646
BREP 5.208 4.026 3.922 3.779 4.234

Rule-based algorithm M5R 5.085 4.419 4.217 4.128 4.462

Tree-based learning algorithms M5P 5.086 4.359 4.178 4.087 4.428
REP 5.229 4.339 4.291 4.211 4.518

Mean 5.829 5.395 5.183 5.071 5.370

Table 10
Results of the best regression methods of each category for the best subsets of the experiments.

Categories Regression methods AT AT–V AT–V–RH AT–V–AP–RH Mean

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Functions LMS 4.285 5.433 3.912 4.968 3.619 4.580 3.621 4.572 3.859 4.888
SMOReg 4.284 5.433 3.913 4.968 3.620 4.585 3.620 4.563 3.859 4.887

Lazy-learning algorithms K⁄ 4.260 5.381 3.628 4.634 3.358 4.331 2.882 3.861 3.532 4.552
Meta-learning algorithms BREP 4.074 5.208 3.035 4.026 2.952 3.934 2.818 3.787 3.220 4.239
Rule-based algorithm M5R 3.985 5.085 3.418 4.419 3.265 4.217 3.172 4.128 3.460 4.462
Tree-based learning algorithms M5P 3.982 5.086 3.362 4.359 3.229 4.178 3.140 4.087 3.428 4.428

REP 4.089 5.229 3.258 4.339 3.214 4.291 3.133 4.211 3.424 4.518
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method gives the highest prediction accuracy for each subset with
three parameters in RMSE measure. According to the mean results
of Table 8, the best subset with three parameters of this experi-
ment is obtained as the subset comprising AT, V, and RH parame-
ters with RMSE of 5.183 as a mean value, which is the average of
the results of all regression methods for the selected subset. Simi-
larly, a one-way ANOVA indicated significant difference between
groups, F(14,285) = 31.13, p < 0.05. Post-hoc tests indicated that
BREP is significantly better than 6 out of 14 methods, namely AR,
IBk, LWL, MLP, RBF, and SLR. MLP was found to be significantly bet-
ter than the least 2 and significantly worse than the top 5 ordered
AT V AP RH

Fig. 10. The ANOVA plot of RMSE performances of models using a single parameter.
Models enumerated correspond to AT, V, AP, and RH, respectively.
by means. Post-hoc tests after issuing ANOVA revealed significant
difference between all subsets containing AT and V-AP-RH. How-
ever, no significant difference was observed among the perfor-
mances of the subsets with three parameters containing AT (see
Fig. 11).

In the last experiment, there is only one subset with four
parameters to apply to the regression methods. Table 9 illustrates
the best results of the other three experiments and the results of
the subset with four parameters. According to the mean RMSE val-
ues of Table 9, the best subset is found to be the subset with AT, V,
AP, and RH parameters, which can be used for predicting PE with
the highest prediction accuracy, with the mean RMSE value of
5.071.
3.7. Selection of the best regression method

Table 9 is a brief table, which indicates the best subset and the
best regression method with the highest prediction accuracy of PE.
According to this table, the subset with four parameters has been
found as the best subset. Moreover, the comparison of the mean
performances indicates that BREP method, which is a meta classi-
fier used as a learner combination, is the best regression method,
which is the most successful regression method with the highest
mean prediction accuracy with a mean RMSE value of 4.234 for
all the best subsets of previous experiments in this table. After-
ward, BREP is followed by respectively M5P, M5R, REP, K⁄, LR, PR,
SMOReg, LMS, SLR, IBk, AR, MLP, LWL, and RBF regression methods
on all evaluation methods. The RBF method is found to be the poor-
est performing predictive model.

In addition to that, the M5R method is the best method with a
RMSE of 5.085 for the subset AT, which is the best subset of the



AT-V-AP AT-V-RH AT-AP-RH V-AP-RH

Fig. 11. The ANOVA plot of models (over all algorithms) with 3-parameter subsets.
As can be seen, the three subsets containing AT do not significantly differ among
themselves however all are significantly better than the one without AT (i.e. subset
with V–AP–RH).
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subsets with one parameter. However, the BREP method is the best
method with a RMSE of 4.026 for the subset AT, and V, which is the
best subset of the subsets with two parameters, and with a RMSE
of 3.922 for the subset AT, V, and RH, which is the best subset of
the subsets with three parameters, and with a RMSE of 3.779 for
the subset AT, V, AP, and RH, that is the best subset of allover the
produced subsets.

According to the performances in Table 9, the scatter plots of
the most successful algorithms for each best subset with one,
two, three and four parameters are presented for the actual and ob-
served PE in Fig. 12. This figure illustrates that BREP performance
for the best subset with four parameters fits best to the ideal line
(i.e., the diagonal line), followed by BREP for the subsets with three,
and two parameters, and M5R for the subset with one parameter.
Fig. 12. Scatter plots of the actual and predicted PE for th
Most of the predicted values of the M5R method are above the
ideal prediction line. This implies that the M5R method over esti-
mates the overall predictions.

The best performed algorithms in each category for the best
subsets of the subsets with one, two, three, and four parameters
are denoted in Table 10. As can be seen this table, the SMOReg
method has the best performances of the functions for the subset
AT, and the subset AT, V, AP, and RH; the LMS method has the best
performance of functions for the subset AT, and V, and the subset
AT, V, and RH. The K⁄ is the best method of the lazy-learning algo-
rithms for the all subsets with one, two, three, and four parame-
ters. The BREP is the most successful algorithm of the meta-
learning algorithms used in this study for all the subsets with
one, two, three, and four parameters. The M5R is the only rule-
based algorithm used for this study. Though the M5P is the best
method of tree-based algorithms for the subset AT, the BREP is also
the best method of tree-based learning algorithm for the subsets
AT and V; AT, V, and RH; AT, V, AP, and RH.

Lastly, we carried out more learner combination experiments
with the best performing N (N = 2. . .6) predictors, namely the best
performing algorithms of each category for the best subsets with
one, two, three, and four parameters shown in Table 10. While
the advantages of learner combination are manifold (avoiding local
minima of learners, providing different views of the data, reducing
estimation variance, etc.), the main criticism is the increased mod-
el complexity. As one of the core values of science is simplicity,
usually referred to as Ockham’s razor, we wish to seek a learner
combiner method as simple and accurate as possible. We see that
the learner combination, namely voting the best N learners, did not
improve over the performance of Bagging REPTree except with AT
feature alone. The best overall performance obtained with the full
set of features (also using Bagging REPTree) did not improve by any
combination of best N predictors as denoted in Table 11. In case the
results have improved slightly due to learner combination, we
e subsets with one, two, three, and four parameters.



Table 11
Comparing the results of the best single regression method with the results of voting the methods.

Categories Regression methods AT AT–V AT–V–RH AT–V–AP–RH Mean

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

The best single method BREP 4.074 5.208 3.035 4.026 2.952 3.934 2.818 3.787 3.220 4.239
Voting first 2 methods BREP, M5P 4.000 5.111 3.147 4.121 3.027 3.971 2.911 3.848 3.271 4.263
Voting first 3 methods BREP, M5P, M5R 3.986 5.091 3.213 4.185 3.085 4.023 2.972 3.904 3.314 4,301
Voting first 4 methods BREP, M5P, M5R, REP 3.989 5.095 3.217 4.190 3.036 3.980 2.948 3.886 3.298 4.288
Voting first 5 methods BREP, M5P, M5R, REP, K⁄ 4.003 5.099 3.202 4.163 3.052 3.985 2.855 3.783 3.278 4,258
Voting first 6 methods BREP, M5P, M5R, REP, K⁄, SMOReg 4.001 5.095 3.248 4.212 3.091 4.015 2.912 3.830 3.313 4,288
Voting first 7 methods BREP, M5P, M5R, REP, K⁄, SMOReg, LMS 4.012 5.108 3.303 4.270 3.137 4.046 2.977 3.887 3.358 4.328

Fig. 13. Scatter plot of the actual PE and predicted PE with the BREP method for the best subset with AT, V, AP, and RH parameters.
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would still recommend using a simpler model due to aforemen-
tioned rule of simplicity.

The scatter plot of the best predictive model of this study, which
predicts full load electrical power output of a CCPP, is denoted in
Fig. 13. This plot is the scatter plot of the actual PE and predicted
PE with the best regression method, which is found as BREP meth-
od, for the best subset, which is found as the subset with four
parameters such as AT, V, AP, and RH, with MAE of 2.818 and with
RMSE of 3.787.

4. Discussion

The ultimate aim of machine learning study is to provide a gen-
eralizable algorithm to predict future, unseen data. From machine
learning perspective, the answer to generalization capability is two
folds: the generalization ability of the algorithm and the general-
ization ability of the trained model. First, we need to distinguish
the model from the method or the algorithm: the methods consist
of the algorithms as well as the abstractions learned by these algo-
rithms from data. The methods optimize an objective function and
learn the abstractions, which collectively and compactly form the
model. Examples to methods are feed-forward neural networks
that utilize error back-propagation with gradient descent to update
the network parameters, namely weights. The model here is a set
of weights connecting the input, hidden and output layers. In the
case of decision trees, a hierarchical ordering of features with
respective thresholds is obtained while the algorithm tries to re-
duce the error (in regression) or increase the information gain (in
classification). Therefore the algorithm validity and the learned
model’s validity are different.
4.1. Validity of learned model

The generalization ability of the learned model can be esti-
mated at lab environment by the performance on unseen test data.
In our simulations, we carry out experiments in 5 � 2 cross valida-
tion scheme. In this scheme the data, which are collected over a
6 year-period, are split into a training set and a testing set. The
training data is used by the algorithm to train a machine learning
model (i.e. to learn model parameters) and the independent testing
set is used to evaluate the model’s performance. Also the model’s
hyper-parameters can be fine tuned using the validation set perfor-
mance. However, in order to avoid over-fitting to data, which wor-
sen the generalization power of the learner, we do not carry out
fine tuning using validation set. Moreover, we carry out statistical
tests to show the relative performance of learned models as well as
the relevant algorithm on unseen test sets.

To assert the validity/generalization power of the model on new
data, we first need to make sure that the data is drawn from the
same underlying distribution. This means that the data should be
generated from the same or similar physical data generation
process. The proposed methods are applied in the power plant
(whose identity is kept confidential) to predict next day’s hourly
power output with a high accuracy (less than 2% mean relative er-
ror). This is an ‘‘on-site, in-the-wild’’ confirmation of the proposed
machine learning methods. If the model is to be used in a different
power plant, first the collected data should match in terms of their
statistics. In case of a totally different ambient condition set (such
as a co-generation power plant in Sweden, where the ambient con-
ditions differ dramatically with respect to Turkey), the model
should be trained from the data collected from this plant. The
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validity/suitability of the algorithms will be discussed in the next
subsection.
4.2. Validity of the training algorithm

As mentioned before, the data are collected over a long period,
therefore are highly representative of the population. Similarly, the
numbers of samples as opposed to the number of features are suf-
ficient to learn a regression model, which can be subjected to sta-
tistical significance analysis. Without fine tuning the method’s
hyper-parameters (such as the number of hidden nodes in a neural
network), the statistical tests provide a confident estimate of rela-
tive performance. We use 5 � 2 CV to obtain 10 simulations to
measure the statistical significance. Based on the findings, we
can argue that in a similar study even with different ambient con-
ditions, the four features collectively are most likely to provide the
best results. Similarly, the best performing algorithms are encour-
aged to be tested first.
5. Conclusion

This study presented an alternative solution model for a predic-
tion of the electrical power output of a base load operated CCPP,
when it was full load. Instead of thermodynamical approaches,
which involve some assumptions with intractably many nonlinear
equations of a real application of a system, machine learning ap-
proaches were preferred to use for accurate prediction. The analy-
sis of a system by using thermodynamical approaches takes too
much computational time and effort, and sometimes the result of
this analysis might be unsatisfactory and unreliable due to many
assumptions taken into account and nonlinear equations. In order
to overcome this obstacle, the analysis of several machine learning
regression methods for predicting output of a thermodynamic sys-
tem, which is a CCPP with two gas turbines, one steam turbine and
two heating systems, was presented as an alternative analysis.

There were two main purposes of this study. The first was to
discover the best subset of our dataset among all other subset con-
figurations in the experiments. For this purpose, we investigated
which parameter or combinations of parameters were the most
influential on the prediction of the target parameter. Secondly,
we aimed to find out which machine learning regression method
was the most successful in prediction of full load electrical power
output.

In order to find out the most influent individual variables or
combination of the variables, all possible subsets of the dataset,
which include 15 different combinations of four variables such as
AT, V, AP and RH, were applied to 15 different machine learning
regression methods. As a result of the experiments, the subset,
which consists of a complete set of parameters, was found to be
the best subset of the dataset among all possible subsets yielding
MAE of 2.818 and RMSE of 3.787 in prediction of electrical power
output. Besides, the best accuracy was obtained by applying the
subset with four parameters using Bagging method with REPTree
predictor. Similarly, according to the average results of the com-
parative experiments, the most successful method, which might
predict the full load electrical power output of a base load operated
CCPP with the highest prediction accuracy, was found as Bagging
REP Tree method, resulting in MAE of 3.220 and in RMSE of 4.239.

The CCPP, where the dataset is supplied for this study, has
started to use this developed predictive model for next day’s
hourly energy output. As input the CCPP uses the next day’s
temperature forecast given by the state’s meteorology institute.
In future works, we plan to perfect the input to this predictive
model by first predicting the next day’s ambient variables more
precisely, and also investigate prediction of electrical power output
for different types of power plants.
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