MAT-27 — Lista-01 — Agosto/2011

1. Verificar quais das seguintes matrizes são inversíveis e determinar as inversas respectivas:

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & -1 \\ 0 & 2 & 0 & 3 \end{bmatrix}.$$

- 2. Existe alguma matriz inversível A tal que $A^2 = \mathbb{O}$ (matriz nula)? Justifique.
- 3. Determinar $x, y \in z$ de modo que a matriz

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ x & y & z \end{bmatrix}$$

seja ortogonal.

4. Considere a matriz:

$$A = \left[\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right].$$

Sendo X uma matriz real 2×1 , quais os valores de λ tal que existe X não nulo que satisfaz a

$$AX = \lambda X$$
?

5. Seja A a seguinte matriz (complexa)

$$A = \left[\begin{array}{ccc} 0 & 0 & \mathbf{i} \\ 0 & 1 & 0 \\ -\mathbf{i} & 0 & 0 \end{array} \right],$$

onde $i^2 = -1$.

- (a) A é uma matriz hermitiana?
- (b) Obtenha A^{-1} .
- (c) Calcule A^2 .
- (d) Deduza uma expressão para A^{2n} e A^{2n+1} , sendo n um natural.
- (e) Sabendo que, para um certo $x \in \mathbb{R}$, e^{xA} é a matriz dada pela série (que pode se mostrar ser convergente):

$$\sum_{n=0}^{\infty} \frac{(xA)^n}{n!} = I + xA + \frac{x^2A^2}{2} + \frac{x^3A^3}{3!} + \dots$$

obtenha e^{xA} . Aqui, por convenção, $A^0 = I$.

- 6. Considere $\{v_1, v_2, \dots, v_n\}$ um conjunto de matrizes coluna de ordem n e seja $M = [v_1 \quad v_2 \quad \dots \quad v_n]$ a matriz $n \times n$ cujas colunas são dadas justamente pelas matrizes v_1, v_2, \dots, v_n . Mostre que:
 - (a) $[\lambda_1 v_1 \quad \lambda_2 v_2 \quad \dots \quad \lambda_n v_n] = MD$, onde $D = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ é a matriz diagonal cujos elementos são $\lambda_1, \lambda_2, \dots, \lambda_n$ (nesta ordem).

 $^{^{1}}$ Uma matriz é hermitiana quando $A=A^{\dagger}$, sendo A^{\dagger} a matriz complexo-conjugada da transposta de A.

- (b) $AM = \begin{bmatrix} Av_1 & Av_2 & \dots & Av_n \end{bmatrix}$, onde A é uma matriz $n \times n$.
- 7. Mostre que não existem matrizes A e B quadradas de ordem n de modo que AB BA seja a matriz identidade.
- 8. Seja A uma matriz quadrada cujos elementos são funções deriváveis na variável real t. Se A é inversível (para um certo t), então mostre que:

$$\frac{dA^{-1}}{dt} = -A^{-1}\frac{dA}{dt}A^{-1}$$

9. Pode-se definir a convergência de uma sequência de matrizes analisando a convergência elemento por elemento. Da mesma forma, pode-se definir a convergência de uma série de matrizes. Supondo que a série de Neumann para uma certa matriz quadrada A:

$$\sum_{n=0}^{\infty} (I - A)^n,$$

seja convergente, mostre que ela converge para A^{-1} . Numericamente, pode-se obter uma aproximação para a inversa da matriz truncando a série acima.

- 10. O traço de uma matriz quadrada P é definido como a soma dos elementos da diagonal principal de P e denotado por tr(P).
 - (a) Sendo A e B matrizes de ordem $m \times n$ e $n \times m$, respectivamente, mostre que tr(AB) = tr(BA) (mesmo quando as matrizes AB e BA são diferentes).
 - (b) Sendo A e B matrizes ambas de ordem $m \times n$, mostre que $\operatorname{tr}(AB^T) = \operatorname{tr}(A^TB) = \operatorname{tr}(B^TA) = \operatorname{tr}(BA^T)$.
 - (c) Se A, B e C são matrizes quadradas de mesma ordem, então mostre a propriedade cíclica do traço: tr(ABC) = tr(BCA) = tr(CAB).
- 11. Sejam A, U, B e V matrizes reais de ordem $p \times p, p \times q, q \times q$ e $q \times p$, respectivamente. Se A e $B + BVA^{-1}UB$ são não singulares, mostre o teorema binomial da inversa:

$$(A + UBV)^{-1} = A^{-1} - A^{-1}UB(B + BVA^{-1}UB)^{-1}BVA^{-1}.$$

- 12. Seja A uma matriz $n \times n$ que tem todos os elementos da diagonal principal iguais a zero e os demais elementos iguais a -1. Obtenha o determinante de A.
- 13. Considere uma matriz A quadrada de ordem n com todos os elementos inteiros, de tal modo que os elementos da diagonal principal de A são ímpares e os demais elementos são pares. Mostre que A é inversível.
- 14. Seja M uma matriz 5×5 com todos os elementos inteiros e pares.
 - (a) É possível que o determinante de M seja igual a 120?
 - (b) Nas condições do problema, seja M tal que $\det(M) = 160$. Certamente, M^{-1} será composta exclusivamente por números racionais. Suponha que os números racionais estejam simplificados ao máximo. Para cada matriz M, denote por d(M) o maior valor do denominador que aparece na sua inversa (supondo que esta já esteja ao máximo simplificada). De todas as matrizes M que satisfazem estas condições, qual o maior valor de d(M)?
- 15. Considere M uma matriz quadrada com todos os elementos inteiros. Se além disso, a soma de cada linha de M é igual a k, mostre que o determinante de M é um múltiplo de k.

Respostas

1. $A \in C$ são inversíveis, mas B não é.

$$A^{-1} = \begin{bmatrix} -1 & 1 \\ 1 & -\frac{1}{2} \end{bmatrix}, \quad C^{-1} = \frac{1}{9} \begin{bmatrix} -2 & 7 & 2 & -1 \\ -3 & -3 & 3 & 3 \\ 7 & -2 & 2 & -1 \\ 2 & 2 & -2 & 1 \end{bmatrix}.$$

- 2. Não.
- 3. $x = 0, y = -z = 1/\sqrt{2}$ ou $x = 0, y = -z = -1/\sqrt{2}$.
- 4. -1 e 3.
- 5. (a) Sim.
 - (b) $\begin{bmatrix} 0 & 0 & i \\ 0 & 1 & 0 \\ -i & 0 & 0 \end{bmatrix}.$
 - (c) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} .$
 - (d) $A^{2n} = I e A^{2n+1} = A$.
 - (e) $e^{xA} = \begin{bmatrix} \cosh x & 0 & -i \sinh x \\ 0 & \cosh x \sinh x & 0 \\ i \sinh x & 0 & \cosh x \end{bmatrix}$.
- 6.
- 7.
- 8.
- 9.
- 10.

11.

13.

- 12. 1 n.
- 14. (a) Não.
 - (b) 10.
- 15.