Instituto Tecnológico de Aeronáutica

MAT46 - Funções de Variável Complexa - Lista 6

Funções conformes, Transformação de Möbius, Equação de Laplace

Exercício 1. Encontre os pontos fixos das transformações

1.1.
$$w = \frac{2z-5}{z+4}$$

1.3.
$$w = z^2$$

1.5.
$$w = iz^2 + (2-i)z$$

1.2.
$$w = iz + 2 - i$$

1.4.
$$w = z + \frac{1}{z}$$

1.6.
$$w = 2z - 3i\bar{z} + 5 - 4i$$

Exercício 2. Dado o triângulo T no plano z com vértices em i, 1 - i, 1 + i, esboce a imagem da região interior de T sob cada uma das transformações abaixo.

2.1.
$$w = z^2$$

2.2.
$$w = iz^2 + (2-i)z$$

2.3.
$$w = z + \frac{1}{z}$$

Exercício 3. Para cada item abaixo, determine uma transformação de Möbius T tal que:

- **3.1.** T transforma os pontos -1, $i \in 1+i$ respectivamente nos pontos $2,3 \in 4$.
- **3.2.** T transforma os pontos 1, -i e 1 respectivamente nos pontos 0, 1 e ∞ .
- **3.3.** T mapeia $|z| \leq 1$ em $|w-1| \leq 1$ tal que 1,-i correspondem a 2, 0, respectivamente

Exercício 4. Encontre a transformação de Möbius que mapeia o semiplano superior do plano z no plano w tal que z = i é mapeado no w = 0 enquanto o ponto no infinito é mapeado no w = -1.

Exercício 5. Prove que sob a transformação $w=\frac{z-i}{iz-1}$, a região $\operatorname{Im} z\geq 0$ é mapeada na região $|w|\leq 1$. O que podemos dizer sobre a região $\operatorname{Im} z\leq 0$?

Exercício 6. Suponha que uma transformação de Möbius possui somente um ponto fixo a. Mostre que ela pode ser escrita na forma $\frac{1}{w-a} = \frac{1}{z-a} + k$ em que k é uma constante.

Exercício 7. Resolva os problemas de valores de contorno para a equação de Laplace abaixo.

7.1.
$$\begin{cases} \Phi_{xx} + \Phi_{yy} = 0, \ x^2 + y^2 > 1 \\ \lim_{r \to 1^-} \Phi(r, \varphi) = \begin{cases} 3, & 0 < \varphi < \pi \\ 0, & \pi < \varphi < 2\pi \end{cases}$$

7.2.
$$\begin{cases} \Phi_{xx} + \Phi_{yy} = 0, \ x \in \mathbb{R}, \ y > 0 \\ \lim_{y \to 0^+} \Phi(x, y) = \begin{cases} T_0, \ x < -1 \\ T_1, \ -1 < x < 1 \\ T_2, \ x > 1 \end{cases}$$

MAT46 - Funções de Variável Complexa - Lista 6

Principais resultados usados

Definição: ponto fixo de uma função

Um ponto $z_0 \in D$ é ponto fixo da função $f: D \subset \mathbb{C} \to \mathbb{C}$ quando

$$f(z_0) = z_0.$$

Definição: ponto crítico

Um ponto $z_0 \in D$ é ponto crítico da função $f: D \subset \mathbb{C} \to \mathbb{C}$ quando

$$f'(z_0) = 0.$$

Definição: ângulo entre curvas regulares

Uma curva $\gamma:(a,b)\to\mathbb{C}$ é regular em (a,b) se

$$\gamma'(t) \neq 0, \quad \forall \ t \in (a, b).$$

Sejam $\gamma_1, \ \gamma_2: (a,b) \to \mathbb{C}$ duas curvas regulares que se interceptam em z_0 , isto é,

$$\gamma_1(t_0) = \gamma_2(t_0) = z_0.$$

O ângulo entre γ_1 e γ_2 no ponto z_0 é o ângulo formado pelos vetores $\gamma_1'(t_0)$ e $\gamma_2'(t_0)$.

Definição: função conforme

Uma função $f: D \to \mathbb{C}$ é conforme em z_0 quando f preserva o ângulo entre curvas regulares que se interceptam em z_0 .

O ângulo deve ser preservado em magnitude e sentido!

Teorema

Se $f:D\to\mathbb{C}$ é analítica em z_0 e $f'(z_0)\neq 0$, então f é conforme em z_0 .