Funções de Variável Complexa

Sumário

7	Transformação conforme e aplicações		
	7.1	Transformação de Möbius	. 131
	7.2	Funções conformes e a equação de Laplace	. 140

7 Transformação conforme e aplicações

Vamos explorar as propriedades geométricas das funções analíticas resolvendo alguns problemas aplicados no caminho.

Uma função analítica é aproximada, na vizinhança de um ponto, por uma função linear. Como a multiplicação por $f'(z) \neq 0$ corresponde a uma rotação e uma dilatação, o ângulo entre dois segmentos que se cruzam em um ponto é preservado (ambos estão girando do mesmo ângulo).

Para formalizar essa propriedade vamos definir os conceitos de curva regular e função conforme.

Definição

Uma curva parametrizada regular é uma função $\gamma:(-T,T)\to\mathbb{C}$ cuja derivada nunca se anula, isto é,

$$\gamma'(t) \neq 0, \quad t \in (-T, T).$$

Considere duas curvas parametrizadas regulares $\gamma, \delta: (-T, T) \to \mathbb{C}$ satisfazendo

$$\gamma(0) = \delta(0) = z_0,$$

isto é, curvas que se encontram em z_0 em t=0.

O ângulo entre γ e δ é o ângulo (orientado) entre os vetores tangentes $\gamma'(0)$ e $\delta'(0)$,

$$\varphi = arg(\gamma'(0)) - arg(\delta'(0)).$$

Definição

Uma função $f: D \to \mathbb{C}$ é conforme em z_0 quando para todo par de curvas parametrizadas regulares $\gamma, \delta: (-T, T) \to \mathbb{C}$ com $\gamma(0) = \delta(0) = z_0$ o ângulo entre as imagens $f \circ \gamma$ e $f \circ \delta$ é igual ao ângulo entre γ e δ .

Uma função conforme em z_0 preserva o ângulo entre curvas que se cruzam nesse ponto.

Uma função conforme em um domínio preserva o ângulo entre curvas que se cruzam em cada ponto do domínio.

Teorema

Teorema da Projeção Conforme

Se $f: D \to \mathbb{C}$ é analítica em z_0 e $f'(z_0) \neq 0$, então f é conforme em z_0 .

O teorema nos dá um critério muito simples para verificar se f é conforme: a função deve ser analítica e sua derivada não-nula em $z_0 \in U$.

Para entender a ligação entre a derivada e o ângulo entre curvas, vamos considerar duas curvas parametrizadas $\gamma, \delta: (-T, T) \to \mathbb{C}$. Suponha que γ e δ são deriváveis, $\gamma'(t) \neq 0, \, \delta'(t) \neq 0$ em todo (-T, T) e as curvas se cruzam em z_0 : $\gamma(0) = \delta(0) = z_0$.

Suponha que f é analítica em z_0 , $f'(z_0) \neq 0$. Calculando a derivada das curvas transformadas $f(\gamma)$ e $f(\delta)$, vemos que

$$(f \circ \gamma)'(t) = f'(\gamma(t))\gamma'(t), \quad (f \circ \delta)'(t) = f'(\delta(t))\delta'(t).$$

Agora calculamos o ângulo entre as tangentes no ponto $w_0 = f(z_0)$, obtendo

$$arg((f \circ \gamma)'(0)) - arg((f \circ \delta)'(0)) = arg(f'(z_0) \gamma'(0)) - arg(f'(z_0) \delta'(0))$$
$$= arg(f'(z_0)) + arg(\gamma'(0)) - [arg(f'(z_0)) + arg(\delta'(0))]$$
$$= arg(\gamma'(0)) - arg(\delta'(0)),$$

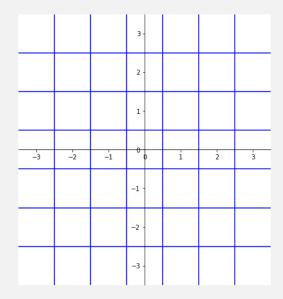
portanto os ângulos são iguais.

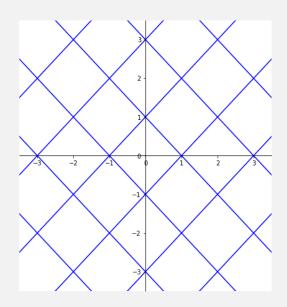
Funções que preservam ângulos são muito importantes. Uma matriz que preserva ângulos recebe um nome especial — ela é uma matriz ortogonal.

Exemplo

A função linear f(z)=(1+i)z é conforme em todo $\mathbb C$, uma vez que $f'(z)=1+i\neq 0$ em todo ponto.

A curva z=z(t) é transformada na curva $w=(1+i)z(t)=\sqrt{2}\exp(i\pi/4)z(t)$, ou seja, todas as curvas são giradas de $\pi/4$.

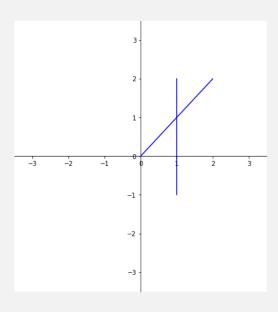


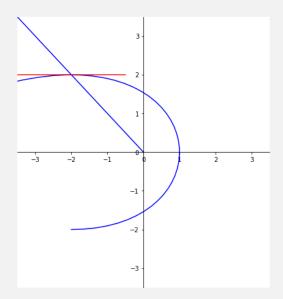


Podemos ver que quando uma família de curvas ortogonais (à esquerda) é transformada por uma função conforme, a imagem desas curvas também é uma família de curvas ortogonais.

A função $f(z)=z^3$ é conforme em $z_0=1+i$.

Temos $f'(z) = 3z^2$, logo f é conforme em todo ponto $z \neq 0$. Em particular em z_0 temos $f'(1+i) = 6i = 6 \exp(i\pi/2)$, curvas que passam por z_0 são rotacionadas $\pi/2$.

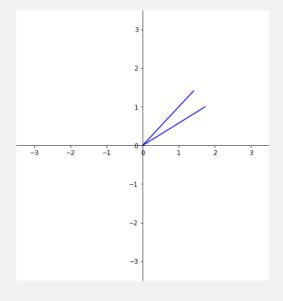


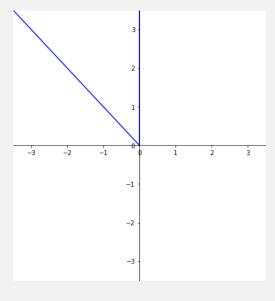


Aqui $z_0 = 1 + i$ e temos duas curvas $\gamma(t) = 1 + i + ti$, $\delta(t) = (1 + i)(1 + t)$.

 $f(\gamma(t)) = -2 - 6t - 3t^2 + i(2 - 3t^2 - t^3), e \quad f(\delta(t)) = (-2 + 2i)(1 + t)^3.$

No ponto $z_0=0$ a função não é conforme. Observe no exemplo que o ângulo entre as curvas aumenta após a transformação.





Definição

Um ponto z_0 onde $f'(z_0) = 0$ é chamado ponto crítico de f.

7.1 Transformação de Möbius

Definição

Uma função racional da forma $f(z)=\frac{az+b}{cz+d}$, para $a,b,c,d\in\mathbb{C}$ constantes, é chamada transformação de Möbius quando

$$ad - bc \neq 0$$
.

Exemplo

Uma função polinomial de grau um f(z)=az+b é uma transformação de Möbius com c=0 e d=1. Essas funções são inteiras e conformes desde que $a\neq 0$.

Considere $c \neq 0$.

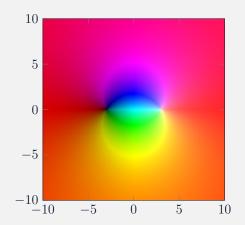
A transformação de Möbius $f(z) = \frac{az+b}{cz+d}$ é definida no plano todo, exceto no ponto -d/c. Além disso a função tem um único zero em -b/a.

A função f é analítica exceto no ponto -d/c. Sua derivada é

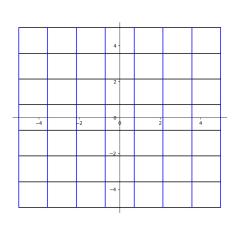
$$f'(z) = \frac{a(cz+d) - c(az+b)}{(cz+d)^2} = \frac{ad - bc}{(cz+d)^2}.$$

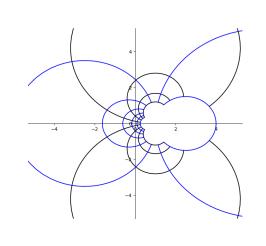
Observe que a condição $ad-bc \neq 0$ garante que f será conforme em todo o seu domínio.

A função f(z)=(z+3)/(z-3) é conforme no plano, exceto no ponto z=3 onde $f(z)\to\infty.$



A imagem à esquerda mostra uma família de curvas no plano z, enquanto as imagens à direita são as curvas transformadas no plano w. Tente identificar qual a imagem de cada curva mostrada.





A inversa de uma transformação de Möbius $f(z) = \frac{az+b}{cz+d}$ é uma transformação do mesmo tipo.

Resolvendo a equação w = f(z) para z, obtemos

$$w(cz+d) = az+b \quad \Rightarrow \quad (cw-a)z = b-dw \quad \Rightarrow \quad z = \frac{-dw+b}{cw-a},$$

a condição para a inversa é $cb-(-a)(-d)\neq 0$, que é a mesma de f, logo é satisfeita. Assim toda transformação de Möbius é uma bijeção entre $\mathbb{C}\setminus\{-d/c\}$ e $\mathbb{C}\setminus\{a/c\}$,

$$f(z) = \frac{az+b}{cz+d} \iff f^{-1}(z) = \frac{-dw+b}{cw-a}.$$

Exemplo

Um ponto fixo de uma função f é uma solução de f(z)=z. Os pontos fixos da transformação $f(z)=\frac{az+b}{cz+d}$ são

$$z = \frac{az+b}{cz+d} \implies cz^2 + dz - az - b = 0$$

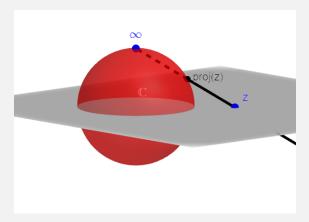
$$z = \frac{a - d + ((a - d)^2 + 4bc)^{1/2}}{2c},$$

para $c \neq 0$. Note que não precisamos do sinal \pm pois $z^{1/2}$ é a função multivalorada.

Função	Pontos fixos
$az, a \not\in \{0,1\}$	$0 e \infty$
$z+b, b \neq 0$	∞
1/z	-1 e 1
(z+3)/(z-3)	$2 \pm \sqrt{7}$

A esfera de Riemann é uma extensão do plano complexo $\mathbb C$ através da adição de um ponto ∞ , chamado (convenientemente) de ponto no infinito.

A ideia é que todas as retas que partem da origem, em todas as direções, se encontram em ∞ . A formalização da esfera de Riemann está além do nosso objetivo, ela usa projeções estereográficas.



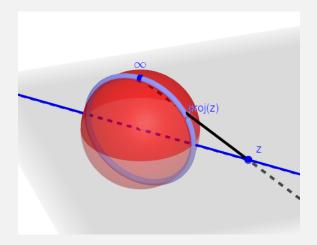
Na esfera de Riemann temos as propriedades operatórias

$$\frac{1}{0} = \infty, \quad \frac{1}{\infty} = 0, \quad \infty + z = \infty, \quad \infty z \infty,$$

a igualdade do produto só vale para $z \neq 0$. Seguem indefinidas as expressões 0∞ , 0/0 e ∞/∞ .

É conveniente trabalhar na esfera de Riemann quando consideramos transformações de Möbius, porque elas se tornam bijeções, não precisamos ficar excluindo o ponto -d/c o tempo todo.

Uma reta no plano corresponde a um círculo na esfera de Riemann que passa pelo pólo norte (∞) . Já uma circunferência no plano corresponde também a uma circunferência na esfera. Assim retas e circunferências são o mesmo objeto na esfera. Para verificar essas propriedades é preciso estudar a projeção, caso o leitor esteja interessado.



Teorema

Seja f a transformação de Möbius

$$f(z) = \frac{az+b}{cz+d}.$$

Se $c \neq 0$, então

- ullet a imagem de um círculo que não passa por -d/c é um círculo;
- a imagem de um círculo que passa por -d/c é uma reta;
- a imagem de uma reta que não passa por -d/c é um círculo que passa por a/c, excluindo o ponto a/c;
- a imagem de uma reta que passa por -d/c é uma reta, excluindo o ponto a/c.

Se c=0, então

- a imagem de um círculo é um círculo;
- a imagem de uma reta é uma reta.

O resultado acima pode ser sumarizado como, considerando a extensão da transformação para a esfera de Riemann, como

A imagem de um círculo por uma transformação de Möbius é um círculo ou uma reta.

A imagem de uma reta por uma transformação de Möbius é um círculo ou uma reta.

Vamos encontrar a imagem do semiplano $A=\{Re(z)>0\}$ por f(z)=(z-i)/(z+i). A fronteira do conjunto A é a reta vertical x=0. Como f é transformação de Möbius, sua imagem é um círculo ou uma reta. Podemos determinar qual dos dois escolhendo três pontos sobre a reta, por exemplo z=0, z=1 e z=2 fornecem

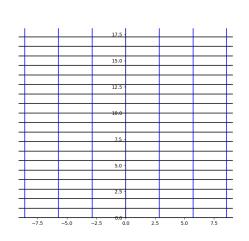
$$f(0) = -1, \quad f(1) = -i, \quad f(2) = (3 - 4i)/5,$$

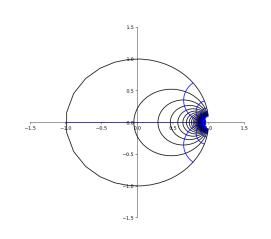
note que os pontos não são colineares, logo a imagem é o círculo |z|=1.

Com três pontos do plano podemos encontrar a equação do círculo.

A imagem de A terá como fronteira esse círculo, para determinar se f(A) é o interior ou exterior do círculo basta testar um ponto interior. Como f(i) = 0 que está no interior do círculo, segue que

$$f(A) = \{ |z| \le 1 \}.$$





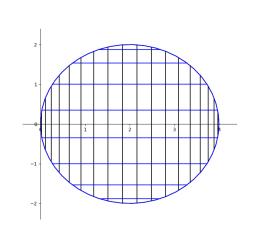
Qual é a imagem do disco $B = \{|z - 2| < 2\}$ por f(z) = z/(2z - 8)?

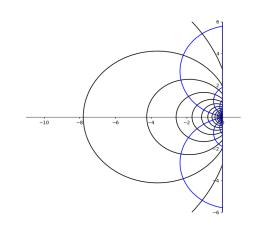
Vamos escolher três pontos na fronteira do disco, que é um círculo, para determinar a imagem da fronteira.

Temos, por exemplo, f(0) = 0, $f(4) = \infty$ e f(2 + 2i) = -i/2, assim a imagem da fronteira é a reta vertical x = 0.

Testando o centro do círculo, temos f(2) = -1/2, logo

$$f(B) = \{x + iy; \ x < 0\}.$$





Uma transformação de Möbius tem quatro coeficientes a,b,c,d. No entanto apenas três desses coeficientes determinam a função, por exemplo quando $c \neq 0$ podemos escrever

$$f(z) = \frac{az+b}{cz+d} = \frac{(a/c)z + (b/c)}{z + d/c},$$

os complexos a/c, b/c e d/c determinam f.

Assim podemos determinar uma transformação a partir do seu valor em três pontos distintos - isso permite formar um sistema de três equações a três incógnitas.

Uma forma prática de determinar a função que transforma os pontos z_1, z_2, z_3 em w_1, w_2, w_3 , nessa ordem, é resolver para a variável w = f(z) a razão cruzada

$$\frac{z-z_1}{z-z_3}\frac{z_2-z_3}{z_2-z_1} = \frac{w-w_1}{w-w_3}\frac{w_2-w_3}{w_2-w_1}$$

Usando a razão cruzada.

Vamos determinar duas transformações do semiplano superior Im(z) > 0 para o disco unitário |z| < 1.

Primeiro vamos encontrar f fixando f(0) = -i, f(1) = 1 e f(-1) = -1. O semieixo real positivo será transformado no semicírculo direito e o semieixo negativo no semicírculo esquerdo.

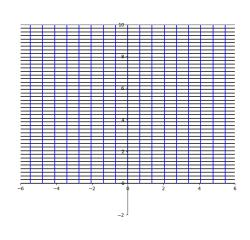
Substituindo na razão cruzada, temos

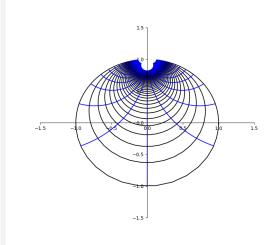
$$\frac{z-0}{z-(-1)} \frac{1-(-1)}{1-0} = \frac{w-(-i)}{w-(-1)} \frac{1-(-1)}{1-(-i)},$$

que fornece a função

$$w = f(z) = i\frac{z - i}{z + i}.$$

Observe que f(i)=0 que está no interior do círculo, dessa forma a imagem do semiplano é o interior do círculo.





Vamos agora encontrar g que transforma os pontos 0, 1, ∞ nos pontos 1, $\sqrt{1/2}(1+i)$, i. Aqui a imagem do eixo real positivo é o arco de 1 a i.

Temos um dos pontos $z_3 = \infty$, assim antes de aplicar os pontos escolhidos na razão cruzada precisamos reescrever como limite:

$$\lim_{z_3\to\infty}\frac{z-z_1}{z-z_3}\frac{z_2-z_3}{z_2-z_1}=\frac{z-z_1}{z_2-z_1}\lim_{z_3\to\infty}\frac{z_2-z_3}{z-z_3}=\frac{z-z_1}{z_2-z_1}.$$

Precisamos resolver então

$$\frac{z}{1} = \frac{w-1}{w-i} \frac{\sqrt{1/2}(1+i) - i}{\sqrt{1/2}(1+i) - 1},$$



7.2 Funções conformes e a equação de Laplace

Vamos resolver alguns problemas envolvendo a equação de Laplace

$$\Delta \psi = \psi_{xx} + \psi_{yy} = 0.$$

Vimos que as partes real e imaginária de uma função analítica são soluções para essa equação.

Geralmente estamos interessados em encontrar uma solução específica de uma equação diferencial parcial, para isso prescrevemos condições extra que identificam a solução buscada.

Essas condições, para a equação de Laplace, tomam a forma de condições de contorno: dado um conjunto Ω aberto no plano, vamos procurar uma solução satisfazendo

- ψ harmônica em Ω ;
- ψ contínua em Ω e na sua fronteira;
- o valor de ψ na fronteira é prescrito por uma função conhecida β .

Chamamos esse problema de problema de Dirichlet para a equação de Laplace em Ω . Resolver esse problema significa encontrar ψ a partir do conhecimento de β . O problema de Dirichlet é escrito usualmente como

$$\begin{cases} \Delta \psi = 0 \\ \psi|_{\partial\Omega} = \beta \end{cases}$$

Esse problema aparece em diferentes áreas da física, por exemplo ele modela a distribuição de temperatura em equilíbrio em uma placa cuja borda é mantida a temperatura fixada conforme β .

Considere o problema

$$\begin{cases} \Delta \psi(x,y) = 0, & y > 0, \\ \psi(x,0) = \begin{cases} 1, & x > 0, \\ 0, & x < 0. \end{cases} \end{cases}$$

Uma função que já encontramos que é constante ao longo de semirretas e que tem um salto em z=0 é a função argumento. Partindo do palpite

$$\psi(x,y) = pArg(z) + q$$

e substituindo valores de x positivos e negativos, verifique que

$$\psi(x,y) = -\frac{1}{\pi}Arg(z) + 1$$

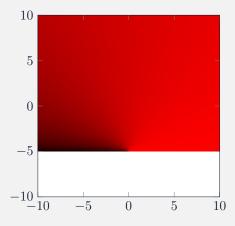
satisfaz as condições de contorno em y = 0.

Observando que

$$f(z) = -\frac{1}{\pi}Log(z) + i = -\frac{1}{\pi}\ln|z| + i\psi(x, y),$$

e que a função Log é analítica no semiplano superior y>0, concluímos que ψ é harmônica no semiplano, pois é a parte imaginária de uma função analítica.

Portanto ψ é a solução do problema de Dirichlet apresentado.



Observe que a solução obtida vem de uma função que não é contínua ao longo do eixo real negativo quando considerada como definida em todo o plano (a função Arg).

No estudo das equações diferenciais isso não é problema. A solução obtida com frequência não tem derivada na fronteira do domínio, ela só é derivável (e portanto solução da equação) no interior do domínio considerado. O que acontece na fronteira e no complementar de Ω só é importante no que diz respeito às condições de contorno.

Mas professor...

Como podemos resolver o problema se o valor de contorno é uma função descontínua?

De fato, esse problema apresenta uma descontinuidade na condição de contorno. A solução ψ , ao cumprir os valores no contorno y=0, será descontínua no ponto (0,0). A solução obtida não é uma solução como definimos acima (chamada solução clássica), no entanto ela é útil tanto na interpretação do problema modelado quanto para resolver outros problemas mais gerais.

Exemplo

Considere agora

$$\begin{cases} \Delta \psi(x,y) = 0, & y > 0, \\ \psi(x,0) = \begin{cases} 0, & x < -2, \\ 1, & -2 < x < 2, \\ 0, & x > 2. \end{cases} \end{cases}$$

Vamos aproveitar a solução do problema anterior observando que a função $Arg(z-x_0)$ é constante nas semirretas $x < x_0$ e $x > x_0$, com descontinuidade em x_0 . Partindo do palpite

$$\psi(x,y) = pArg(z+2) + qArg(z-2) + s,$$

e substituindo valores de x em cada intervalo, obtemos as condições

$$\begin{cases} \psi(-5,0) = pArg(-3) + qArg(-7) + s = \pi p + \pi q + s, \\ \psi(0,0) = pArg(2) + qArg(-2) + s = \pi q + s, \\ \psi(5,0) = pArg(7) + qArg(3) + s = s. \end{cases}$$

Resolvendo o sistema para nossas condições de contorno vem

$$\psi(x,y) = -\frac{1}{\pi} Arg(z+2) + \frac{1}{\pi} Arg(z-2).$$

Observando que

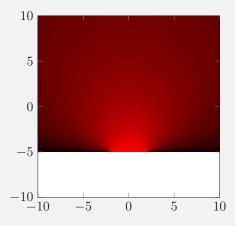
$$f(z) = \frac{1}{\pi} Log(z-2) - \frac{1}{\pi} Log(z+2) = \frac{1}{\pi} (\ln|z-2| - \ln|z+2|) + i\psi(x,y),$$

e que a função f é analítica no semiplano superior y > 0, concluímos que u é harmônica no semiplano, pois é a parte imaginária de uma função analítica.

Portanto ψ é a solução do problema de Dirichlet apresentado.

Podemos escrever ψ nas variáveis x e y diretamente usando as representações válidas no semiplano superior para Arg,

$$\psi(x,y) = \frac{1}{\pi} \left(arc \cot \left(\frac{x-2}{y} \right) - arc \cot \left(\frac{x+2}{y} \right) \right).$$



Considere o problema de Dirichlet para a equação de Laplace no disco

$$\begin{cases} \Delta \psi(x,y) = 0, & x^2 + y^2 < 1, \\ \psi(x,y) = & \begin{cases} 0, & y > 0, \ x^2 + y^2 = 1, \\ 1, & y < 0, \ x^2 + y^2 = 1. \end{cases} \end{cases}$$

A abordagem usual para esse problema é usar coordenadas polares para passar para uma equação em um domínio retangular.

Ao invés disso, vamos usar as transformações de Möbius que vimos na seção anterior para traduzir o problema acima em outro definido no semiplano superior, onde já conhecemos a solução.

Podemos construir a transformação do disco no semiplano de várias maneiras. Como temos duas descontinuidades na condição de contorno, vamos prescrever que uma delas é transformada no 0 e a outra no ∞ , de modo a ficar com apenas uma descontinuidade no novo problema.

Impondo $f(1)=0,\ f(-1)=\infty$ e f(i)=2, um pouco de álgebra nos rende a transformação

$$f(z) = \frac{2i - 2iz}{z + 1}.$$

Escrevendo as partes real e imaginária de f, obtemos as novas variáveis

$$u = u(x,y) = \frac{4y}{(x+1)^2 + y^2}, \qquad v = v(x,y) = 2\frac{1 - x^2 + y^2}{(x+1)^2 + y^2},$$

que transformam nosso problema original em

$$\begin{cases} \Delta \Psi(u, v) = 0, & v > 0, \\ \Psi(u, 0) = \begin{cases} 1, & u < 0, \\ 0, & u > 0. \end{cases} \end{cases}$$

Resolvendo o problema para Ψ como acima, obtemos

$$\Psi(u,v) = \frac{1}{\pi} Arg(u+iv) = \frac{1}{\pi} arc \cot \left(\frac{v}{u}\right).$$

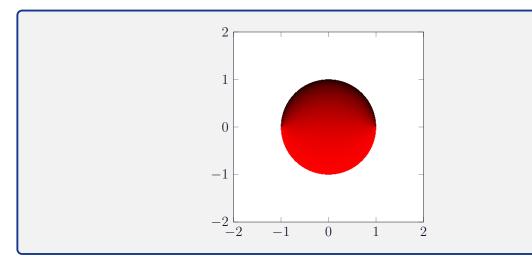
Encontramos a solução do problema original definindo

$$\psi(x,y) = \Psi(u(x,y),v(x,y)).$$

Concluímos que

$$\psi(x,y) = \frac{1}{\pi} arc \cot \left(\frac{1 - x^2 - y^2}{2y}\right)$$

é a solução do problema original.



Mas professor...

Como podemos ter certeza que a função ψ é harmônica?

Ótima observação. É importante verificar que a solução obtida realmente atende aos requisitos do problema. É um bom exercício verificar que a função acima é harmônica calculando diretamente suas derivadas parciais.

Podemos também observar que

$$Arg(u+iv) = Im(Log(u+iv)) = Im\left(Log\left(\frac{2i-2iz}{z+1}\right)\right),$$

logo é uma função harmônica no domínio onde aquele Log é analítico.

A técnica usada acima funciona porque compondo uma função harmônica e uma função analítica, o resultado ainda é uma função harmônica. O resultado formal é o teorema a seguir.

Teorema

Sejam f = u + iv analítica e injetora no aberto D e Φ harmônica no aberto D' = f(D).

Então

$$\phi(x,y) = \Phi(u(x,y),v(x,y))$$

é uma função harmônica em D.

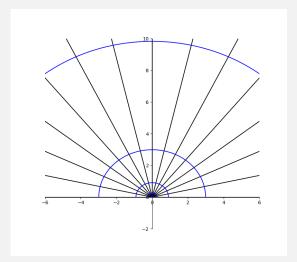
Para verificar que as funções obtidas são harmônicas nós combinamos ψ com sua harmônica conjugada formando uma função analítica.

Essa função é chamada potencial complexo. As partes real e imaginária do potencial complexo determinam as linhas equipotenciais e linhas de fluxo do problema, elas são as curvas de nível da parte real e imaginária.

No nosso primeiro exemplo do semiplano, temos

$$f(z) = -\frac{1}{\pi}Log(z) + i,$$

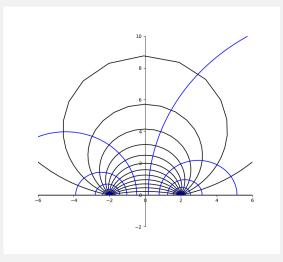
as curvas equipotenciais são mostradas em preto e as curvas de fluxo em azul. Aqui o calor flui a partir do eixo mantido a temperatura positiva e em direção do eixo com temperatura negativa ao longo de círculos. Os raios partindo da origem tem temperatura constante.



No nosso primeiro exemplo do semiplano, temos

$$f(z) = \frac{1}{\pi} Log(z-2) - \frac{1}{\pi} Log(z+2).$$

As curvas equipotenciais são mostradas em preto e as curvas de fluxo em azul. Aqui o calor flui a partir do segmento [-2,2] em direção ao ∞ e ao restante do eixo real ao longo de círculos e as linhas de temperatura constante ligam as duas descontinuidades da condição de contorno.



Por fim temos no disco unitário o potencial

$$f(z) = \frac{1}{\pi} Log\left(\frac{2i - 2iz}{z + 1}\right).$$

As curvas equipotenciais são mostradas em preto e as curvas de fluxo em azul. Observe que o fluxo acontece na direção vertical.

